41 research outputs found

    Notes on the Discontinuous Galerkin methods for the numerical simulation of hyperbolic equations 1 General Context 1.1 Bibliography

    Full text link
    The roots of Discontinuous Galerkin (DG) methods is usually attributed to Reed and Hills in a paper published in 1973 on the numerical approximation of the neutron transport equation [18]. In fact, the adventure really started with a rather thoroughfull series of five papers by Cockburn and Shu in the late 80's [7, 5, 9, 6, 8]. Then, the fame of the method, which could be seen as a compromise between Finite Elements (the center of the method being a weak formulation) and Finite Volumes (the basis functions are defined cell-wise, the cells being the elements of the primal mesh) increased and slowly investigated successfully all the domains of Partial Differential Equations numerical integration. In particular, one can cite the ground papers for the common treatment of convection-diffusion equations [4, 3] or the treatment of pure elliptic equations [2, 17]. For more information on the history of Discontinuous Galerkin method, please refer to section 1.1 of [15]. Today, DG methods are widely used in all kind of manners and have applications in almost all fields of applied mathematics. (TODO: cite applications and structured/unstructured meshes, steady/unsteady, etc...). The methods is now mature enough to deserve entire text books, among which I cite a reference book on Nodal DG Methods by Henthaven and Warburton [15] with the ground basis of DG integration, numerical analysis of its linear behavior and generalization to multiple dimensions. Lately, since 2010, thanks to a ground work of Zhang and Shu [26, 27, 25, 28, 29], Discontinuous Galerkin methods are eventually able to combine high order accuracy and certain preservation of convex constraints, such as the positivity of a given quantity, for example. These new steps forward are very promising since it brings us very close to the "Ultimate Conservative Scheme", [23, 1]

    Construction of conservative PkPm space-time residual discretizations for conservation laws I : theoretical aspects

    Get PDF
    This paper deals with the construction of conservative high order and positivity preserving schemes for nonlinear hyperbolic conservation laws. In particular, we consider space-time Petrov-Galerkin discretizations inspired by residual distribution ideas and based on a PkPm polynomial approximations in space-time. The approximation is continuous in space and discontinuous in time so that one single space-time slab at the time can be dealt with. We show constructions involving linear high order and nonlinear schemes. Principles borrowed from the residual distribution approach, such as multidimensional upwinding and positivity preservation, are used to construct the Petrov-Galerkin test functions. The numerical results on one dimensional linear and nonlinear conservation laws show that higher accuracy and positivity are obtained uniformly with respect to the physical CFL number

    Statistical and probabilistic modeling of a cloud of particles coupled with a turbulent fluid

    Get PDF
    This paper exposes a novel exploratory formalism, the end goal of which is the numerical simulation of the dynamics of a cloud of particles weakly or strongly coupled with a turbulent fluid. Given the large panel of expertise of the list of authors, the content of this paper scans a wide range of connex notions, from the physics of turbulence to the rigorous definition of stochastic processes. Our approach is to develop reduced-order models for the dynamics of both carrying and carried phases which remain consistant within this formalism, and to set up a numerical process to validate these models. The novelties of this paper lie in the gathering of a large panel of mathematical and physical definitions and results within a common framework and an agreed vocabulary (sections 1 and 2), and in some preliminary results and achievements within this context, section 3. While the first three sections have been simplified to the context of a gas field providing that the disperse phase only retrieves energy through drag, the fourth section opens this study to the more complex situation when the disperse phase interacts with the continuous phase as well, in an energy conservative manner. This will allow us to expose the perspectives of the project and to conclude

    Conception et Analyse de Schémas Distribuant le Résidu d'Ordre Très Élevé. Application à la Mécanique des Fluides.

    No full text
    Numerical simulations are nowadays a major tool in aerodynamic design in aeronautic, automotive, naval industry, etc... One of the main challenges to push further the limits of the simulation codes is to increase their accuracy within a fixed set of resources (computational power and/or time). Two possible approaches to deal with this issue are either to construct discretization yielding, on a given mesh, very high order accurate solutions, or to construct compact, massively parallelizable schemes to minimize the computational time by means of a high performance parallel implementation. In this thesis, we try to combine both approaches by investigating the construction and implementation of very high order Residual Distribution Schemes (RDS) with the most possible compact stencil. The manuscript starts with a review of the mathematical theory of hyperbolic Conservation Laws (CLs). The aim of this initial part is to highlight the properties of the analytical solutions we are trying to approximate, in order to be able to link these properties with the ones of the sought discrete solutions. Next, we describe the three main steps toward the construction of a very high order RDS: \begin{itemize} \item The definition of higher order polynomial representations of the solution over polygons and polyhedra; \item The design of low order compact conservative RD schemes consistent with a given (high degree) polynomial representation. Among these, particular accent is put on the simplest, given by a generalization of the Lax-Friedrich's (LxF) scheme; \item The design of a positivity preserving nonlinear transformation, mapping first-order linear schemes onto nonlinear very high order schemes. \end{itemize} In the manuscript, we show formally that the schemes obtained following this procedure are consistent with the initial CL, that they are stable in LL^{\infty} norm, and that they have the proper truncation error. Even though all the theoretical developments are carried out for scalar CLs, remarks on the extension to systems are given whenever possible. Unfortunately, when employing the first order LxF scheme as a basis for the construction of the nonlinear discretization, the final nonlinear algebraic equation is not well-posed in general. In particular, for smoothly varying solutions one observes the appearance of high frequency spurious modes. In order to kill these modes, a streamline dissipation term is added to the scheme. The analytical implications of this modifications, as well as its practical computation, are thoroughly studied. Lastly, we focus on a correct discretization of the boundary conditions for the very high order RDS proposed. The theory is then extensively verified on a variety of scalar two dimensional test cases. Both triangular, and hybrid triangular-quadrilateral meshes are used to show the generality of the approach. The results obtained in these tests confirm all the theoretical expectations in terms of accuracy and stability and underline some advantages of the hybrid grids. Next, we consider solutions of the two dimensional Euler equations of gas dynamics. The results obtained are quite satisfactory and yet, we are not able to obtain the desired convergence rates on problems involving solid wall boundaries. Further investigation of this problem is under way. We then discuss the parallel implementation of the schemes, and analyze and illustrate the performance of this implementation on large three dimensional problems. Due to the preliminary character and the complexity of these three dimensional problems, a rather qualitative discussion is made for these tests cases: the overall behavior seems to be the correct one, but more work is necessary to assess the properties of the schemes in three dimensions. In the last chapter, we consider one possible extension to the Navier-Stokes equations in which the viscous terms are discretized by a standard Galerkin approach. We formally show that the overall discretization is consistent with the Navier-Stokes equations. However some accuracy issues are highlighted and discussed. The method is tested on a flat plate laminar boundary layer flow. The results are satisfactory. The work presented in this thesis allows a better understanding of the general properties of very high order RDS, and contributes substantially to bring forward a number of open issues for future improvement. These improvements should make RD discretizations a very appealing alternative to now classical high order and very high order FV ENO/WENO schemes, and to the increasingly popular class of Discontinuous Galerkin schemes.La simulation numérique est aujourd'hui un outils majeur dans la conception des objets aérodynamiques, que ce soit dans l'aéronautique, l'automobile, l'industrie navale, etc... Un des défis majeurs pour repousser les limites des codes de simulation est d'améliorer leur précision, tout en utilisant une quantité fixe de ressources (puissance et/ou temps de calcul). Cet objectif peut être atteint par deux approches différentes, soit en construisant une discrétisation fournissant sur un maillage donné une solution d'ordre très élevé, soit en construisant un schéma compact et massivement parallélisable, de manière à minimiser le temps de calcul en distribuant le problème sur un grand nombre de processeurs. Dans cette thèse, nous tentons de rassembler ces deux approches par le développement et l'implémentation de Schéma Distribuant le Résidu (RDS) d'ordre très élevé et de compacité maximale. Ce manuscrit commence par un rappel des principaux résultats mathématiques concernant les Lois de Conservation hyperboliques (CLs). Le but de cette première partie est de mettre en évidence les propriétés des solutions analytiques que nous cherchons à approcher, de manière à injecter ces propriétés dans celles de la solution discrète recherchée. Nous décrivons ensuite les trois étapes principales de la construction d'un schéma RD d'ordre très élevé : \begin{itemize} \item la représentation polynomiale d'ordre très élevé de la solution sur des polygones et des polyèdres; \item la description de méthodes distribuant le résidu de faible ordre, compactes et conservatives, consistantes avec une représentation polynomiale des données de très haut degré. Parmi elles, une attention particulière est donnée à la plus simple, issue d'une généralisation du schéma de Lax-Friedrichs (LxF); \item la mise en place d'une procédure préservant la positivité qui transforme tout schéma stable et linéaire, en un schéma non linéaire d'ordre très élevé, capturant les chocs de manière non oscillante. \end{itemize} Dans le manuscrit, nous montrons que les schémas obtenus par cette procédure sont consistants avec la CL considérée, qu'ils sont stables en norme \L^{\infty} et qu'ils ont la bonne erreur de troncature. Même si tous ces développements théoriques ne sont démontrés que dans le cas de CL scalaires, des remarques au sujet des problèmes vectoriels sont faites dès que cela est possible. Malheureusement, lorsqu'on considère le schéma LxF, le problème algébrique non linéaire associé à la recherche de la solution stationnaire est en général mal posé. En particulier, on observe l'apparition de modes parasites de haute fréquence dans les régions de faible gradient. Ceux-ci sont éliminés grâce à un terme supplémentaire de stabilisation dont les effets et l'évaluation numérique sont précisément détaillés. Enfin, nous nous intéressons à une discrétisation correcte des conditions limites pour le schéma d'ordre élevé proposé. Cette théorie est ensuite illustrée sur des cas test scalaires bidimensionnels simples. Afin de montrer la généralité de notre approche, des maillages composés uniquement de triangles et des maillages hybrides, composés de triangles et de quadrangles, sont utilisés. Les résultats obtenus par ces tests confirment ce qui est attendu par la théorie et mettent en avant certains avantages des maillages hybrides. Nous considérons ensuite des solutions bidimensionnelles des équations d'Euler de la dynamique des gaz. Les résultats sont assez bons, mais on perd les pentes de convergence attendues dès que des conditions limite de paroi sont utilisées. Ce problème nécessite encore d'être étudié. Nous présentons alors l'implémentation parallèle du schéma. Celle-ci est analysée et illustrée à travers des cas test tridimensionnel de grande taille. Du fait de la relative nouveauté et de la complexité des problèmes tridimensionels, seuls des remarques qualitatives sont faites pour ces cas test : le comportement global semble être bon, mais plus de travail est encore nécessaire pour définir les propriétés du schémas en trois dimensions. Enfin, nous présentons une extension possible du schéma aux équations de Navier-Stokes dans laquelle les termes visqueux sont traités par une formulation de type Galerkin. La consistance de cette formulation avec les équations de Navier-Stokes est démontrée et quelques remarques au sujet de la précision du schéma sont soulevées. La méthode est validé sur une couche limite de Blasius pour laquelle nous obtenons des résultats satisfaisants. Ce travail offre une meilleure compréhension des propriétés générales des schémas RD d'ordre très élevé et soulève de nouvelles questions pour des améliorations futures. Ces améliorations devrait faire des schémas RD une alternative attractive aux discrétisations classiques FV ou ENO/WENO, aussi bien qu'aux schémas Galerkin Discontinu d'ordre très élevé, de plus en plus populaires

    Au sujet du Gaussien Anisotrope

    No full text
    Dans ce document, on considère un nuage de particules solides transporté par un support gazeux. Pour le moment, on ne s'intéresse pas au problème de la distribution en taille de ces particules. On cherche une description purement statistique du problème et l'on considère pour cela la fonction de répartition f pt, x, cq du nombre probable de particule se déplaçant à la vitesse c, à la position x et au temps t. L'équation de Williams-Boltzmann régit le transport de cette fonction de répartition dans l'espace des phase pt, x, cq : B t f ` B x p cf q ` B c ´ Ff ¯ " 0 (1) Les deux premiers termes expriment le transport des particules à leur vitesse respective, tandis que le troisième terme exprime un couplage avec le champ de vitesse du gaz sous-jacent. En fonction de son inertie, la particule relaxe plus ou moins vite vers la vitesse du gaz. Ce phénomène est caractérisé par le temps de relaxation τ p et la force de couplage peut être modélisée sous sa forme la plus simple comme : F " p u g ´ cq{τ p. (2

    Conception et analyse de schémas d'ordre très élevé distribuant le résidu : application à la mécanique des fluides

    No full text
    La simulation numérique est aujourd'hui un outils majeur dans la conception des objets aérodynamiques, que ce soit dans l'aéronautique, l'automobile, l'industrie navale, etc... Un des défis majeurs pour repousser les limites des codes de simulation est d'améliorer leur précision, tout en utilisant une quantité fixe de ressources (puissance et/ou temps de calcul). Cet objectif peut être atteint par deux approches différentes, soit en construisant une discrétisation fournissant sur un maillage donné une solution d'ordre très élevé, soit en construisant un schéma compact et massivement parallèlisable, de manière à minimiser le temps de calcul en distribuant le problème sur un grand nombre de processeurs. Dans cette thèse, nous tentons de rassembler ces deux approches par le développement et l'implémentation de Schéma Distribuant le Résidu (RDS) d'ordre très élevé et de compacité maximale. Ce manuscrit commence par un rappel des principaux résultats mathématiques concernant les Lois de Conservation hyperboliques (CLs). Le but de cette première partie est de mettre en évidence les propriétés des solutions analytiques que nous cherchons à approcher, de manière à injecter ces propriétés dans celles de la solution discrète recherchée. Nous décrivons ensuite les trois étapes principales de la construction d'un schéma RD d'ordre très élevé : - la représentation polynomiale d'ordre très élevé de la solution sur des polygones et des polyèdres; - la description de méthodes distribuant le résidu de faible ordre, compactes et conservatives, consistantes avec une représentation polynomiale des données de très haut degré. Parmi elles, une attention particulière est donnée à la plus simple, issue d'une généralisation du schéma de Lax-Friedrichs (\LxF); - la mise en place d'une procédure préservant la positivité qui transforme tout schéma stable et linéaire, en un schéma non linéaire d'ordre très élevé, capturant les chocs de manière non oscillante. Dans le manuscrit, nous montrons que les schémas obtenus par cette procédure sont consistants avec la CL considérée, qu'ils sont stables en norme L^∞ et qu'ils ont la bonne erreur de troncature. Même si tous ces développements théoriques ne sont démontrés que dans le cas de CLs scalaires, des remarques au sujet des problèmes vectoriels sont faites dès que cela est possible. Malheureusement, lorsqu'on considère le schéma \LxF, le problème algébrique non linéaire associé à la recherche de la solution stationnaire est en général mal posé. En particulier, on observe l'apparition de modes parasites de haute fréquence dans les régions de faible gradient. Ceux-ci sont éliminés grâce à un terme supplémentaire de stabilisation dont les effets et l'évaluation numérique sont précisément détaillés. Enfin, nous nous intéressons à une discrétisation correcte des conditions limites pour le schéma d'ordre élevé proposé. Cette théorie est ensuite illustrée sur des cas test scalaires bidimensionnels simples. Afin de montrer la généralité de notre approche, des maillages composés uniquement de triangles et des maillages hybrides, composés de triangles et de quandrangles, sont utilisés. Les résultats obtenus par ces tests confirment ce qui est attendu par la théorie et mettent en avant certains avantages des maillages hybrides. Nous considérons ensuite des solutions bidimensionnelles des équations d'Euler de la dynamique des gaz. Les résultats sont assez bons, mais on perd les pentes de convergence attendues dès que des conditions limite de paroi sont utilisées. Ce problème nécessite encore d'être étudié. Nous présentons alors l'implémentation parallèle du schéma. Celle-ci est analysée et illustrée à travers des cas test tridimensionnel de grande taille.Numerical simulations are nowadays a major tool in aerodynamic design in aeronautic, automotive, naval industry etc... One of the main challenges to push further the limits of the simulation codes is to increase their accuracy within a fixed set of resources (computational power and/or time). Two possible approaches to deal with this issue are either to contruct discretizations yielding, on a given mesh, very high order accurate solutions, or to construct compact, massively parallelizable schemes to minimize the computational time by means of a high performance parallel implementation. In this thesis, we try to combine both approaches by investigating the contruction and implementation of very high order Residual Distribution Schemes (RDS) with the most possible compact stencil. The manuscript starts with a review of the mathematical theory of hyperbolic Conservation Laws (CLs). The aim of this initial part is to highlight the properties of the analytical solutions we are trying to approximate, in order to be able to link these properties with the ones of the sought discrete solutions. Next, we describe the three main steps toward the construction of a very high order RDS: - The definition of higher order polynomial representations of the solution over polygons and polyhedra; - The design of low order compact conservative RD schemes consistent with a given (high degree) polynomial representation. Among these, particular accest is put on the simplest, given by a generalization of the Lax-Friedrich's (\LxF) scheme; - The design of a positivity preserving nonlinear transformation, mapping first-order linear schemes onto nonlinear very high order schemes. In the manuscript, we show formally that the schemes obtained following this procedure are consistent with the initial CL, that they are stable in L^∞ norm, and that they have the proper truncation error. Even though all the theoretical developments are carried out for scalar CLs, remarks on the extension to systems are given whenever possible. Unortunately, when employing the first order \LxF scheme as a basis for the construction of the nonlinear discretization, the final nonlinear algebraic equation is not well-posed in general. In particular, for smoothly varying solutions one observes the appearance of high frequency spurious modes. In order to kill these modes, a streamline dissipation term is added to the scheme. The analytical implications of this modifications, as well as its practical computation, are thouroughly studied. Lastly, we focus on a correct discretization of the boundary conditions for the very high order RDS proposed. The theory is then extensively verified on a variety of scalar two dimensional test cases. Both triangular, and hybrid triangular-quadrilateral meshes are used to show the generality of the approach. The results obtained in these tests confirm all the theoretical expectations in terms of accuracy and stability and underline some advantages of the hybrid grids. Next, we consider solutions of the two dimensional Euler equations of gas dynamics. The results obtained are quite satisfactory and yet, we are not able to obtain the desired convergence rates on problems involving solid wall boundaries. Further investigation of this problem is under way. We then discuss the parallel implementation of the schemes, and analyze and illustrate the performance of this implementation on large three dimensional problems. Due to the preliminary character and the complexity of these three dimensional problems, a rather qualitative discussion is made for these tests cases: the overall behavior seems to be the correct one, but more work is necessary to assess the properties of the schemes in three dimensions

    Conception et Analyse de Schémas Distribuant le Résidu d'Ordre Très Élevé. Application à la Mécanique des Fluides.

    No full text
    Numerical simulations are nowadays a major tool in aerodynamic design in aeronautic, automotive, naval industry, etc... One of the main challenges to push further the limits of the simulation codes is to increase their accuracy within a fixed set of resources (computational power and/or time). Two possible approaches to deal with this issue are either to construct discretization yielding, on a given mesh, very high order accurate solutions, or to construct compact, massively parallelizable schemes to minimize the computational time by means of a high performance parallel implementation. In this thesis, we try to combine both approaches by investigating the construction and implementation of very high order Residual Distribution Schemes (RDS) with the most possible compact stencil. The manuscript starts with a review of the mathematical theory of hyperbolic Conservation Laws (CLs). The aim of this initial part is to highlight the properties of the analytical solutions we are trying to approximate, in order to be able to link these properties with the ones of the sought discrete solutions. Next, we describe the three main steps toward the construction of a very high order RDS: \begin{itemize} \item The definition of higher order polynomial representations of the solution over polygons and polyhedra; \item The design of low order compact conservative RD schemes consistent with a given (high degree) polynomial representation. Among these, particular accent is put on the simplest, given by a generalization of the Lax-Friedrich's (LxF) scheme; \item The design of a positivity preserving nonlinear transformation, mapping first-order linear schemes onto nonlinear very high order schemes. \end{itemize} In the manuscript, we show formally that the schemes obtained following this procedure are consistent with the initial CL, that they are stable in LL^{\infty} norm, and that they have the proper truncation error. Even though all the theoretical developments are carried out for scalar CLs, remarks on the extension to systems are given whenever possible. Unfortunately, when employing the first order LxF scheme as a basis for the construction of the nonlinear discretization, the final nonlinear algebraic equation is not well-posed in general. In particular, for smoothly varying solutions one observes the appearance of high frequency spurious modes. In order to kill these modes, a streamline dissipation term is added to the scheme. The analytical implications of this modifications, as well as its practical computation, are thoroughly studied. Lastly, we focus on a correct discretization of the boundary conditions for the very high order RDS proposed. The theory is then extensively verified on a variety of scalar two dimensional test cases. Both triangular, and hybrid triangular-quadrilateral meshes are used to show the generality of the approach. The results obtained in these tests confirm all the theoretical expectations in terms of accuracy and stability and underline some advantages of the hybrid grids. Next, we consider solutions of the two dimensional Euler equations of gas dynamics. The results obtained are quite satisfactory and yet, we are not able to obtain the desired convergence rates on problems involving solid wall boundaries. Further investigation of this problem is under way. We then discuss the parallel implementation of the schemes, and analyze and illustrate the performance of this implementation on large three dimensional problems. Due to the preliminary character and the complexity of these three dimensional problems, a rather qualitative discussion is made for these tests cases: the overall behavior seems to be the correct one, but more work is necessary to assess the properties of the schemes in three dimensions. In the last chapter, we consider one possible extension to the Navier-Stokes equations in which the viscous terms are discretized by a standard Galerkin approach. We formally show that the overall discretization is consistent with the Navier-Stokes equations. However some accuracy issues are highlighted and discussed. The method is tested on a flat plate laminar boundary layer flow. The results are satisfactory. The work presented in this thesis allows a better understanding of the general properties of very high order RDS, and contributes substantially to bring forward a number of open issues for future improvement. These improvements should make RD discretizations a very appealing alternative to now classical high order and very high order FV ENO/WENO schemes, and to the increasingly popular class of Discontinuous Galerkin schemes.La simulation numérique est aujourd'hui un outils majeur dans la conception des objets aérodynamiques, que ce soit dans l'aéronautique, l'automobile, l'industrie navale, etc... Un des défis majeurs pour repousser les limites des codes de simulation est d'améliorer leur précision, tout en utilisant une quantité fixe de ressources (puissance et/ou temps de calcul). Cet objectif peut être atteint par deux approches différentes, soit en construisant une discrétisation fournissant sur un maillage donné une solution d'ordre très élevé, soit en construisant un schéma compact et massivement parallélisable, de manière à minimiser le temps de calcul en distribuant le problème sur un grand nombre de processeurs. Dans cette thèse, nous tentons de rassembler ces deux approches par le développement et l'implémentation de Schéma Distribuant le Résidu (RDS) d'ordre très élevé et de compacité maximale. Ce manuscrit commence par un rappel des principaux résultats mathématiques concernant les Lois de Conservation hyperboliques (CLs). Le but de cette première partie est de mettre en évidence les propriétés des solutions analytiques que nous cherchons à approcher, de manière à injecter ces propriétés dans celles de la solution discrète recherchée. Nous décrivons ensuite les trois étapes principales de la construction d'un schéma RD d'ordre très élevé : \begin{itemize} \item la représentation polynomiale d'ordre très élevé de la solution sur des polygones et des polyèdres; \item la description de méthodes distribuant le résidu de faible ordre, compactes et conservatives, consistantes avec une représentation polynomiale des données de très haut degré. Parmi elles, une attention particulière est donnée à la plus simple, issue d'une généralisation du schéma de Lax-Friedrichs (LxF); \item la mise en place d'une procédure préservant la positivité qui transforme tout schéma stable et linéaire, en un schéma non linéaire d'ordre très élevé, capturant les chocs de manière non oscillante. \end{itemize} Dans le manuscrit, nous montrons que les schémas obtenus par cette procédure sont consistants avec la CL considérée, qu'ils sont stables en norme \L^{\infty} et qu'ils ont la bonne erreur de troncature. Même si tous ces développements théoriques ne sont démontrés que dans le cas de CL scalaires, des remarques au sujet des problèmes vectoriels sont faites dès que cela est possible. Malheureusement, lorsqu'on considère le schéma LxF, le problème algébrique non linéaire associé à la recherche de la solution stationnaire est en général mal posé. En particulier, on observe l'apparition de modes parasites de haute fréquence dans les régions de faible gradient. Ceux-ci sont éliminés grâce à un terme supplémentaire de stabilisation dont les effets et l'évaluation numérique sont précisément détaillés. Enfin, nous nous intéressons à une discrétisation correcte des conditions limites pour le schéma d'ordre élevé proposé. Cette théorie est ensuite illustrée sur des cas test scalaires bidimensionnels simples. Afin de montrer la généralité de notre approche, des maillages composés uniquement de triangles et des maillages hybrides, composés de triangles et de quadrangles, sont utilisés. Les résultats obtenus par ces tests confirment ce qui est attendu par la théorie et mettent en avant certains avantages des maillages hybrides. Nous considérons ensuite des solutions bidimensionnelles des équations d'Euler de la dynamique des gaz. Les résultats sont assez bons, mais on perd les pentes de convergence attendues dès que des conditions limite de paroi sont utilisées. Ce problème nécessite encore d'être étudié. Nous présentons alors l'implémentation parallèle du schéma. Celle-ci est analysée et illustrée à travers des cas test tridimensionnel de grande taille. Du fait de la relative nouveauté et de la complexité des problèmes tridimensionels, seuls des remarques qualitatives sont faites pour ces cas test : le comportement global semble être bon, mais plus de travail est encore nécessaire pour définir les propriétés du schémas en trois dimensions. Enfin, nous présentons une extension possible du schéma aux équations de Navier-Stokes dans laquelle les termes visqueux sont traités par une formulation de type Galerkin. La consistance de cette formulation avec les équations de Navier-Stokes est démontrée et quelques remarques au sujet de la précision du schéma sont soulevées. La méthode est validé sur une couche limite de Blasius pour laquelle nous obtenons des résultats satisfaisants. Ce travail offre une meilleure compréhension des propriétés générales des schémas RD d'ordre très élevé et soulève de nouvelles questions pour des améliorations futures. Ces améliorations devrait faire des schémas RD une alternative attractive aux discrétisations classiques FV ou ENO/WENO, aussi bien qu'aux schémas Galerkin Discontinu d'ordre très élevé, de plus en plus populaires

    Conception et analyse de schémas d'ordre très élevé distribuant le résidu : application à la mécanique des fluides

    No full text
    La simulation numérique est aujourd'hui un outils majeur dans la conception des objets aérodynamiques, que ce soit dans l'aéronautique, l'automobile, l'industrie navale, etc... Un des défis majeurs pour repousser les limites des codes de simulation est d'améliorer leur précision, tout en utilisant une quantité fixe de ressources (puissance et/ou temps de calcul). Cet objectif peut être atteint par deux approches différentes, soit en construisant une discrétisation fournissant sur un maillage donné une solution d'ordre très élevé, soit en construisant un schéma compact et massivement parallèlisable, de manière à minimiser le temps de calcul en distribuant le problème sur un grand nombre de processeurs. Dans cette thèse, nous tentons de rassembler ces deux approches par le développement et l'implémentation de Schéma Distribuant le Résidu (RDS) d'ordre très élevé et de compacité maximale. Ce manuscrit commence par un rappel des principaux résultats mathématiques concernant les Lois de Conservation hyperboliques (CLs). Le but de cette première partie est de mettre en évidence les propriétés des solutions analytiques que nous cherchons à approcher, de manière à injecter ces propriétés dans celles de la solution discrète recherchée. Nous décrivons ensuite les trois étapes principales de la construction d'un schéma RD d'ordre très élevé : - la représentation polynomiale d'ordre très élevé de la solution sur des polygones et des polyèdres; - la description de méthodes distribuant le résidu de faible ordre, compactes et conservatives, consistantes avec une représentation polynomiale des données de très haut degré. Parmi elles, une attention particulière est donnée à la plus simple, issue d'une généralisation du schéma de Lax-Friedrichs (\LxF); - la mise en place d'une procédure préservant la positivité qui transforme tout schéma stable et linéaire, en un schéma non linéaire d'ordre très élevé, capturant les chocs de manière non oscillante. Dans le manuscrit, nous montrons que les schémas obtenus par cette procédure sont consistants avec la CL considérée, qu'ils sont stables en norme L^∞ et qu'ils ont la bonne erreur de troncature. Même si tous ces développements théoriques ne sont démontrés que dans le cas de CLs scalaires, des remarques au sujet des problèmes vectoriels sont faites dès que cela est possible. Malheureusement, lorsqu'on considère le schéma \LxF, le problème algébrique non linéaire associé à la recherche de la solution stationnaire est en général mal posé. En particulier, on observe l'apparition de modes parasites de haute fréquence dans les régions de faible gradient. Ceux-ci sont éliminés grâce à un terme supplémentaire de stabilisation dont les effets et l'évaluation numérique sont précisément détaillés. Enfin, nous nous intéressons à une discrétisation correcte des conditions limites pour le schéma d'ordre élevé proposé. Cette théorie est ensuite illustrée sur des cas test scalaires bidimensionnels simples. Afin de montrer la généralité de notre approche, des maillages composés uniquement de triangles et des maillages hybrides, composés de triangles et de quandrangles, sont utilisés. Les résultats obtenus par ces tests confirment ce qui est attendu par la théorie et mettent en avant certains avantages des maillages hybrides. Nous considérons ensuite des solutions bidimensionnelles des équations d'Euler de la dynamique des gaz. Les résultats sont assez bons, mais on perd les pentes de convergence attendues dès que des conditions limite de paroi sont utilisées. Ce problème nécessite encore d'être étudié. Nous présentons alors l'implémentation parallèle du schéma. Celle-ci est analysée et illustrée à travers des cas test tridimensionnel de grande taille.Numerical simulations are nowadays a major tool in aerodynamic design in aeronautic, automotive, naval industry etc... One of the main challenges to push further the limits of the simulation codes is to increase their accuracy within a fixed set of resources (computational power and/or time). Two possible approaches to deal with this issue are either to contruct discretizations yielding, on a given mesh, very high order accurate solutions, or to construct compact, massively parallelizable schemes to minimize the computational time by means of a high performance parallel implementation. In this thesis, we try to combine both approaches by investigating the contruction and implementation of very high order Residual Distribution Schemes (RDS) with the most possible compact stencil. The manuscript starts with a review of the mathematical theory of hyperbolic Conservation Laws (CLs). The aim of this initial part is to highlight the properties of the analytical solutions we are trying to approximate, in order to be able to link these properties with the ones of the sought discrete solutions. Next, we describe the three main steps toward the construction of a very high order RDS: - The definition of higher order polynomial representations of the solution over polygons and polyhedra; - The design of low order compact conservative RD schemes consistent with a given (high degree) polynomial representation. Among these, particular accest is put on the simplest, given by a generalization of the Lax-Friedrich's (\LxF) scheme; - The design of a positivity preserving nonlinear transformation, mapping first-order linear schemes onto nonlinear very high order schemes. In the manuscript, we show formally that the schemes obtained following this procedure are consistent with the initial CL, that they are stable in L^∞ norm, and that they have the proper truncation error. Even though all the theoretical developments are carried out for scalar CLs, remarks on the extension to systems are given whenever possible. Unortunately, when employing the first order \LxF scheme as a basis for the construction of the nonlinear discretization, the final nonlinear algebraic equation is not well-posed in general. In particular, for smoothly varying solutions one observes the appearance of high frequency spurious modes. In order to kill these modes, a streamline dissipation term is added to the scheme. The analytical implications of this modifications, as well as its practical computation, are thouroughly studied. Lastly, we focus on a correct discretization of the boundary conditions for the very high order RDS proposed. The theory is then extensively verified on a variety of scalar two dimensional test cases. Both triangular, and hybrid triangular-quadrilateral meshes are used to show the generality of the approach. The results obtained in these tests confirm all the theoretical expectations in terms of accuracy and stability and underline some advantages of the hybrid grids. Next, we consider solutions of the two dimensional Euler equations of gas dynamics. The results obtained are quite satisfactory and yet, we are not able to obtain the desired convergence rates on problems involving solid wall boundaries. Further investigation of this problem is under way. We then discuss the parallel implementation of the schemes, and analyze and illustrate the performance of this implementation on large three dimensional problems. Due to the preliminary character and the complexity of these three dimensional problems, a rather qualitative discussion is made for these tests cases: the overall behavior seems to be the correct one, but more work is necessary to assess the properties of the schemes in three dimensions
    corecore